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Missing Responses and IRT Ability Estimation: 
Omits, Choice, Time Limits, and Adaptive Testing 

Abstract 

The basic equations of item response theory (IRT) provide a foundation for 

inferring examinees' abilities from responses to different test items. In practice, examinees 

do not generally provide a response to all items—for reasons that may or may not have 

been intended by the test administrator, and that may or may not be related to their ability. 

The mechanisms that produce missingness must be taken into account if correct inferences 

are to be drawn. Using concepts introduced by Rubin (1976), we discuss the implications 

for Bayesian and direct likelihood ability parameter estimation that are entailed by alternate 

test forms, targeted testing, adaptive testing, time limits, omitted responses, and examinee 

choice of tasks. Attention is focused on whether, in each case, the mechanism for 

missingness is "ignorable," and, in those cases in which it is not, how it can be modeled. 

Key words:     Adaptive testing; choice; customized tests; item response theory; missing 

data; omitted responses; targeted testing 



1.0     Introduction 

Item response theory (IRT) models the probability of an examinee's responses to 

test items as conditionally independent, given an unobservable ability parameter G (Lord, 

1980). The oft-cited capacity of IRT for measuring different examinees with different test 

items implies inference in the presence of missing data, since an examinee may not have 

provided a response to every item in the item domain of interest. The following types of 

missingness are in fact routinely encountered in applications of IRT: 

• Alternate test forms. Two or more tests with similar content but different items are 

often employed to minimize carry-over effects, reduce fatigue and practice effects, 

or avoid cheating. An examinee is administered one form selected at random. 

• Targeted testing. Tests pitched at different levels of difficulty make measurement 

more efficient when background information related to ability, such as grade or 

courses taken, can be used to determine which test to administer to each examinee. 

• Adaptive testing. Testing can also be made more efficient if each item presented to 

an examinee is selected in light of responses thus far. 

• Not-reached items. Under typical testing conditions, some examinees will not 

reach the last items on a test because of the time limit. 

• Omitted items. Even when an item has been presented and an examinee has time to 

consider it, the examinee will sometimes choose not to respond. 

• Examinee choice. Examinees may be allowed to examine a number of items, and 

choose which to answer, subject to specified constraints (e.g., "Answer any two of 

the following four questions"). 

When incomplete data are encountered, the IRT model that determines responses is 

embedded in a more encompassing model that determines which responses will be 

observed and which will be missing. This paper discusses the implications that missing 

responses hold for direct likelihood and Bayesian inferences about examinee ability 

parameters, assuming item parameters are known. When can the process that causes 

missingness be ignored? When it cannot be ignored, how can it be modeled? How can 

conventional IRT methods for missing responses be evaluated in this framework? Section 

2 extends IRT notation to handle missingness, using concepts and notation from Little and 

Rubin (1987) and Rubin (1976). Next, Rubin's (1976) conditions for when the 

missingness process can be ignored are reviewed. Sections 3-8 address the six types of 

missingness listed above. Section 9 is a non-technical summary of the main results. 
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2.0 Background 

Section 2.1 gives notation for IRT. Section 2.2 extends IRT to missing data 

situations using concepts and notation from Rubin (1976) and Little and Rubin (1987), and 

Section 2.3 lists Rubin's results on ignorability. 

2.1 Notation for IRT 

DEFINITION. An IRT model with examinee parameter 6 is said to satisfy local 

independence (LI) in a domain of n items if 

?rob{Ul=u1,...,Un=unW,ß1,...,ßn,y) = fl?vob(Uj=uj\d,ßj), 
7=1 

or, written more compactly, 

Prob(£/ = u\ 0,ß,y) = fe(u) = ft/of" A (2.1) 
7=1 

where Uj is the response variable for Item./, Uj represents a value thereof, and u = 

(«!,..., un); fe (•) is the response function, interpreted as applying to individual items or 

sets of items in accordance with its arguments; ßj is a possibly vector-valued parameter 

characterizing the dependency of response probabilities to Itemy on 6, and ß = (ßl,...,ßn); 

and v denotes covariate information about examinees, such as age or courses taken. 

It will be seen below that results for alternate test forms, targeted testing, adaptive 

testing, and not-reached items can be obtained without further specification of models in 

addition to the IRT model. Results for omitted items and choice items, however, require 

speculations about, and modeling of, the examinees' perspective on the missingness 

process. Sections dealing with these cases focus on a class of IRT models that is common 

in educational testing, namely those satisfying local independence, unidimensionality, and 

monotonicity (Holland & Rosenbaum, 1986). We adapt an acronym from Zwick (1990): 

DEFINITION. An IRT model is said to be SMURFLK2) if it satisfies the following 

conditions: 

Strict Monotonicity; i.e., 6' > Q" => Prob(c/; = 1|0') > Probhjj = l|0"). 

• Unidimensional Response Functions; i.e., the domain of 6 is 9?1. 

• Local Independence. 

• 2 possible responses, correct or incorrect, can be observed for each item; 
specifically, Uj=l indicates a correct answer and 0 an incorrect answer. 
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Under the Rasch model for dichotomous items, for example, 8 and ßj are real numbers, 

and f0(uj)= exp[M;(ö-^)]/[l + exp(ö-^)] (Figure 1). 

[Figure 1 about here] 

If there is no possibility of missing responses, (2.1) is interpreted as a likelihood 
function, say L(6\u), once a particular value w of U has been observed. Direct likelihood 

inferences are based solely on relative values of L at different values of 8. One might say, 

for example, that the probability of ü at 8' is twice that at 8", or that it attains its 

maximum at 8, the maximum likelihood estimate (MLE). Under direct likelihood 

inference, the MLE is interpreted only as a feature of the likelihood induced by the data that 

were actually observed, not as a realized value of an estimator with a reference distribution 

concerning repeated samples of U with a fixed "true" 8. This presentation does not focus 

on sampling distribution inferences, although some remarks will be made in passing. 

Bayesian inferences are based on the posterior distribution for 8 given ü, or 

p{8\u) = K{ü) L(8\ü)p(8), (2.2) 

where K(ü) is a normalizing constant and p(6) is the prior distribution for 8. The first 

panel of Figure 2 shows the L(6\u) that corresponds to« = (1,0) for the two items in 

Figure 1; the second panel is the p(8\u) that results from L(8\u) when p(0)=N(0,l). 

[Figure 2 about here] 

2.2     Notation for Missing Responses 

Suppose that an examinee provides responses to only a subset of the items. The 

data thus consist of (i) the identification of the items to which responses are observed and 

(ii) the responses to those items. We consider inference about 8 from this extended 

observation, assuming the IRT model and item parameters are known, adapting notation 

and terminology from Little and Rubin (1987) and Rubin (1976): 

U = (Ui,...,Un) is the (possibly hypothetical) random vector of responses to all 

items. 

• M= (Mh...,Mn) is a "missing-data indicator," with each element taking a value of 

0 or 1. If m=l, the value of Uj is observed; if m=0, it is missing. 

V = (Vl5...,Vn) conveys the data that are actually observed: Vj = Uj if m;- = 1 but 

V.; = * if nij = 0, where * indicates that the value of Uj is missing. 
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An realized value of M, say in, effects a partition of U, u, V, and v according to 

which elements are observed and which are missing. We write U= (*/mis,£/obs) to 

distinguish the missing and observed elements of U; similarly, u = (Wmis»"obs)- As witn 5 

and m, v denotes a realized value of V. Note that v is inferentially equivalent to (uobs,m); 

and that by (2.1), fe{u) = fe(umis)fe{uohs). 

Inferences about 0 must be based on the data that are actually observed, or V = 

(UobsM). Modeling the hypothetical complete data vector (UM), even if there is no 

intention of observing a response to every item, forces us to explicate our beliefs about the 

relationships among ability, item response, and missingness. To this end, define 
g<j> (m\ u) = Prob(M = m\U = u,<p), with 0 the possibly vector-valued parameter of the 

missingness process (which may include 0 itself). As we shall see, the form of g will 

depend on the process, and elements of <p can characterize the examinee, the testing 

situation, or both. So defined, 

Prob(C7 = u,M = m\6, <p) = Prob(tf = u\G, 0)Prob(M = m\U = u, 6, <j>) 

= Prob(J7 = «|0)Prob(M = m\U = u, 6, <p) 

= fe(u)8^{m\u). 

Whenever all potential responses may not be observed for any reason, even if they 

all do turn out to be observed, the data are v. The likelihood function is obtained as 

L(e,<p\v) = L(e,<t>\fh,üobs) = 500 J/0(Mmis,üobs)g^(m|Mmis,üobs)^mis, (2.3) 

with 8QQ taking the value 1 if a value (0,0) is in the parameter space Q.e<p and 0 if not. 

The realized values of observed responses «obs are constant in (2.3), and marginalization is 

over the unknown values of the unobserved responses u^. The observed-data likelihood 

is thus a weighted average over all complete-data likelihoods for full response vectors u that 
are in accord with the observed responses to the observed items uobs. The weights are 

proportional to the probabilities of these potential response patterns for the different values 
Mmis, with m and «obs fixed. In the context of IRT, the probability for the observed 

responses can be factored out and brought outside the integral, so that 

1(0,01 v) = ^/0(üobs)J/0(Mmis)^(mlMmis,üobs)rf«nüs. (2.4) 

Appropriate likelihood inferences are based on relative values of L(0,0lv) at 

various values of (0, (f). Bayesian inferences are based on the posterior distribution 

p{G,$\v) = K(v)L(d,<l>\v)p{e,(t>), (2.5) 
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with p(8, <p) the prior distribution for (8, <f). In general, the correct likelihood function for 

8 under IRT with missing responses involves a nuisance parameter 0, and depends not on 

just the responses that were observed, through fe(üobs), but also on the responses that 

were not observed, through fe(umis) and g0(mlMmis,«obs) under the integral in (2.4). 

2.3     Conditions for Ignorability 

Ignoring the missingness process when drawing inferences about 8 means that 
instead of using the correct likelihood L(8,<p\v), using a facsimile of (2.1) with wobs alone, 

L (0'"obs)= ^efei^obs)- (2.6) 

Direct likelihood inferences about 8 that ignore the missingness process simply compare 

values of L* at various values of 8, and Bayesian inferences that ignore the missingness 

process proceed from a facsimile of (2.2) obtained as 

L*{6\üohs)p(d). (2.7) 

It is a pleasant state of affairs when the missingness process can be ignored, since 

(2.6) and (2.7) don't require the specification of g, and standard computing algorithms can 

be used. Depending on why the missing responses were missing, however, these 

procedures need not lead to the correct inferences. Rubin (1976) specifies conditions under 

which a missingness process can be ignored under sampling distribution, direct likelihood, 

and Bayesian inference. Useful sufficient conditions for ignorability under direct 

likelihood and Bayesian inference, the focus of this paper, involve the following concepts: 

DEFINITION.  Missing responses are missing completely at random (MCAR) if for 
each value of 0 and for each fixed value m, g^{m\u) takes the same value for all u. That 

is, g^{m\u)=g^{m). 

DEFINITION. Missing responses are missing at random (MAR) if for each value of (j> 

and for all fixed values m and wobs, g^,(m\umis,uobs) takes the same value for all H^,.. That 

is, g^(m\u)=g^(m\uöbs). 

DEFINITION. The parameter 8 is distinct (D) from <j> if their joint parameter space factors 

into a 8 -space and a 0-space, and when prior distributions are specified for 8 and (j), 

they are independent. 

Remarks, (a) MCAR implies MAR. (b) For direct-likelihood distinctness to be satisfied, 

conditioning on <p must not change the support of the likelihood function for 8. For 

Bayesian distinctness, conditioning on (j> must also not change belief about 8. (c) Taken 
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together, MCAR and D imply that the values of both the observed and the missing 

responses are independent of the pattern of missingness. MAR and D together imply that 

the values of the missing responses are independent of the pattern of missingness, 

conditional on the values of the observed responses. 

We are now in a position to summarize Rubin's results for direct-likelihood and 

Bayesian inferences. First, a more easily verified sufficient condition: 

THEOREM 2.1 (Rubin, 1976, pp. 581). When making direct-likelihood or Bayesian 

inferences about 6, it is appropriate to ignore the process that causes missing data if MAR 

and D are satisfied. 

Proof. When MAR is satisfied, g does not depend on umis and can be brought out of the 

integral in (2.3), which then simply integrates to one. If D is satisfied as well, L(0,0lv) 

depends on 6 only through /0(wobs). D 

Under weaker conditions, the integral need not drop out but its value does not 

depend on 9. Necessary and sufficient (NS) conditions are given below, without proofs. 

THEOREM 2.2 (Rubin, 1976, pp. 586). Suppose L(6,0\v) > 0 for all 6 e Qe   All 

likelihood ratios for 6 ignoring the process that causes missing data are correct for all 
(peQ^/if and only if (a) Q6(fl = Qe x Q.^ and (b) for each <p e Q^, the quantity 

E"*. {^(™lMmis'"obs)|>">"obs> Ö, <p} (2.8) 

takes the same positive value for all 6. 

Remarks. Theorem 2.2 says that for direct-likelihood ignorability to hold in the IRT 

context, given any value of the missingness parameter and the observed data v, the 

probability of the observed pattern of missingness must be the same for all values of 6. 

This is true if MAR and D hold, since these constitute sufficient conditions for ignorability. 
If D holds but MAR does not, the varying values of g^Mu^^ü^) under the integral in 

(2.3) must be exactly counterbalanced by varying values of /e(wniiS,«obs). While it is 

straightforward to construct artificial examples in which this happens, it appears rare in 

practice to find applications in which the conditions in Theorem 2.2 are satisfied but MAR 

is not. Section 7 below, for example, discusses the counter-intuitive circumstances that 

would have to hold if intentional omitting were to meet this condition. 
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THEOREM 2.3 (Rubin, 1976, pp. 587). The posterior distribution of 9 ignoring the 

process that causes missing data equals the correct posterior distribution of 6 if and only if 

^^{^(^'"mis^obs^^obs'e) (2-9) 

takes a constant positive value. 

Remark. Theorem 2.3 says that for Bayesian ignorability to hold in the IRT context, then 

given the observed data v the probability of the observed pattern of missingness must be 

the same for all values of d. 

3.0     Alternate Test Forms 

"Alternate test forms" are sets of items that all fit the same IRT model, and the test 

administrator is indifferent as to which form an examinee is presented. The item sets on 

different forms may overlap. The form an examinee receives depends on a random process 

specified by the administrator, such as a coin flip or a form-spiraling scheme. In practice, 

IRT inferences about 6 from alternate test forms are commonly based on L (0l«obs) • 

The use of K alternate test forms implies that only K missingness patterns, say 

\m^\.. .,m(*\.. .,m(/f) j, can occur, where all the item-level elements of pattern 

m(fc) = (m[k\...,m^A are zero except those which correspond to the items that appear in 

Formfc. Denote by (j)k the administrator-determined values Prob(Af=mw). Assuming an 

LI (locally independent) IRT model means that fe{u) is as given in (2.1); that is, the 

values of item responses are governed by 6 alone, regardless of which items would be 

administered. Even though the items of only one form will actually be presented, it is 

possible to express our assumptions about the connection between the (hypothetical) values 

of the complete response pattern and the probability of the missingness pattern as follows: 

*(»■»>-{* irl"fm=mW p.» 
THEOREM 3.1. Random assignment of alternate test forms satisfies MC AR, and therefore 

MAR as well. 

Proof. This follows immediately from (3.1), since the values of g do not depend on u.  D 
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THEOREM 3.2. The missingness induced by random administration of alternate test forms 

is ignorable under direct likelihood and Bayesian inference. 

Proof. By Theorem 3.1, MAR is satisfied. Verifying D for likelihood inference requires 

that the 0 and <j> parameter spaces are distinct; this follows from (3.1). Verifying D for 

Bayesian inference requires that prior beliefs about 6 and 0 be independent; this also 

follows from (3.1). Ignorability follows from Theorem 2.1. □ 

4.0     Targeted Testing 

"Targeted testing" involves multiple test forms in which the distributions of item 

difficulty differ purposefully from form to form. Exploiting the facts that (1) estimates of 

8 are more precise when an examinee is administered items with difficulties near the value 

of 6, and (2) covariates y that are related to 6 may be available, targeted testing uses an 

examinee's covariate to select a test form that is likely to be more informative than other 

otherwise similar forms. For example, an easy form and a hard form might be constructed 

from a set of n items calibrated together under the same IRT model, and the easy form 

administered to first graders and the hard form to second graders. 

As with alternate test forms, the existence of K forms for targeted testing implies 

that only Kpatterns of M, again denoted |m(1),...,m(/i:) j, can be realized. As with 

alternate test forms, the missingness parameter <p is the vector of indicator variables (f>k 

indicating the test form selected for the examinee. The parameter of the missingness 

process now consists of the administrator-determined values (j)k(y) = ProbfM = mwly), 

which indicate the probability that an examinee with covariate y will be administered Form 
k. For at least one k and two values y' and y", <j>k{y') * <Pk{y"). This happens when the 

test administrator knows p(8\y') * p(6\y") and that the difficulty of Form k is better suited 

to the typical examinee with Y=y' than one with Y-y", or vice versa. 

THEOREM 4.1. Targeted assignment of test forms based on examinee covariates satisfies 

MCAR, and therefore MAR as well. 

Proof. Values of g do not depend on«. D 

THEOREM 4.2. The missingness induced by administration of test forms based on 

examinee covariates y is ignorable under direct likelihood inference if all values of 6 can 

occur at all values of y. 
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Proof. By Theorem 4.1, MAR is satisfied. Verifying D for likelihood inference requires 

that 8 is distinct from 0; that is, conditioning on (j) must not change the support of the 

likelihood function for 8. This condition fails under targeted testing only if, for some 

assignments of test forms, certain values of 8 cannot occur. Q 

THEOREM 4.3. The missingness induced by administration of test forms based on 

examinee covariates y is ignorable under Bayesian inference only if 8 and y are 

independent (i.e., the targeting is wholly ineffective). 

Proof. Under the targeted-testing missingness mechanism, g does not depend on u and the 

missingness parameter <j) is fixed a priori by the test administrator, so (2.9) simplifies to 

lgJm)\m, 8 j, or the probability of a given missingness pattern given 8. By Theorem 2.3, 

ignorability obtains under Bayesian inference iff this quantity takes a constant positive 

value. But since targeted testing means that g is not constant with respect to y, g will be 

constant for 8 only if y is independent of 8. •-' 

THEOREM 4.4. The missingness induced by targeted testing is ignorable under Bayesian 

inference conditional on y; i.e., the correct posterior is proportional to L (0luobs)/?(0ly). 

Proof. As in the preceding proof, under targeted testing the expression (2.9) simplifies 

because g does not depend on u and the missingness parameter <j> is fixed a priori by the 

test administrator. If we condition on y, it becomes lg<p (m)\m, 8, y|, or, by the definition 

of g, simply lg* (m)\m, y\—a constant with respect to 8, as required by Theorem 2.3.   t-J 

Remarks. By Theorem 4.2, the correct value of the MLE is obtained for 8 under targeted 

testing. For correct Bayesian inference, however, the relationship between y and 8 must 

be taken into account, so L*(0lwobs)/?(0ly) yields correct inferences but L (8\üobs)p(8) 

generally does not. 

5.0     Adaptive Testing 

As noted above, IRT measurement is more precise if an examinee is administered 

items that are informative in the neighborhood of the value of 8 (Wainer et al., 1990). 

Adaptive testing uses an examinee's preceding responses to select each next item to 

administer. Under the Rasch model, for example, an examinee answering items correctly 
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would be administered successively more difficult items, and an examinee answering 

incorrectly would be administered successively easier items. 

The datum observed in adaptive testing is a sequence of N < n ordered pairs, S = 

l[Ii>Uobs(i))'--->[IN'Uobs(N)))>'where /^identifies the k'th item administered and Uobs{k) is 

the response to that item. Define the partial response sequence Sk as the first k ordered 

pairs in S, with the null sequence s0 representing the status as the test begins. Testing may 

continue until a desired level of precision is reached, a predetermined number of items has 

been administered, or a specified number of correct or of incorrect responses has been 

observed. Augment the collection of items with the fictitious Item 0, the selection of which 

corresponds to a decision to terminate testing. It can be written as the JV+lst item in the 

adaptive test, but no response is associated with it. 

A test administrator defines an adaptive test design by specifying, for all items j and 
all realizable partial response sequences sk, the probabilities <p(j,sk) that Itemy will be 

selected as the k+lst test item, after the partial response sequence ^has been observed 

from an examinee. Under Bayesian minimum variance item selection, for example, the as- 

yet-unadministered item that minimizes the expected posterior variance of 6 with respect to 
the current distribution p{8\sk) is chosen as the k+\st item with probability one (Owen, 

1975). Note that the value of s conveys the value of v, because mj=\ if /#=/' for some 
k e (1,..., N) and ra/=0 if not, and the responses to the administered items constitute «obs. 

THEOREM 5.1. The conditional distribution of response sequence S is given by 
N+l 

Prob(5 = s\6) = fe{uobs) n*(/*,**_!)• (5.1) 

Proof. The probability of S for an examinee with ability 8 can be constructed sequentially. 
The probability of selection for the first item is </>(ii,s0). The probability of response ut to 

Item z'j is given by the IRT model as fe[u^), which does not depend on the fact that Item 

i1 happened to have been presented first. The probability of selection for the second item 

given sx is «/»(^I), which depends on the value of u^ but not on 6 given ut . The 

probability of the corresponding response is fe(ui\ again independent of the 

identification of, and the response to, the first item.   Continuing in this manner through the 

decision to stop testing, or the selection of Item 0 as the JV+lst item, yields 
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.AT+l 

Prob(5 = Jlö)= n/ek)n^fe.^-i) 

= /e("obs)ri0fe'^-i)- 

(5.2) 

D 
THEOREM 5.2. The missingness mechanism induced by adaptive testing satisfies MAR. 

Proof. Since S conveys the values of m and «0bS, the probability of (m,«)is the product of 

the probability of (i) observing a response sequence that implies m and «obs, and (ii) the 

probability of umis. Denote by Tm = {s:M = m and Uobs = wobs} the set of response 

sequences with missingness patterns and observed item responses that match those of 

(m,u). Then 
Prob(M = m,U = u) = Prob(S eTm)x ProbfC/^ = umis) 

= JProb(S e Tm\6) x Prob(tfmis = u^s\6)d6 

f AM-1 

= Ji X /e("obs)n^*'*ifc-i) 
UeT, m jfc=l 

x n^'^-i) 
N+l 

x n^'^-i) 
■reT„ k=\ 

fe(umis)de 

{J/0("obs)/e(»mis)^ö} 

xProb(f/ = w). 

Since g^(m\u) = Prob(M = m,U = u)/Prob(U = u), 

N+l 

which does not depend on umis, as required to satisfy MAR. 

(5.3) 

D 

THEOREM 5.3. The missingness induced by adaptive testing is ignorable under direct 

likelihood and Bayesian inference. 

Proof. By Theorem 5.1, the conditional probability of the observation S given 6 factors 

into two terms, namely fe{udbs) an^ a term tnat does not depend on 6. The term 

L(d, 01 V) in direct likelihoods and Bayesian posteriors thus reduces to L (0lüobs), as 

required for ignorability. t-J 
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Alternative Proof. The missingness mechanism g in adaptive testing is specified a priori, 

and does not depend on 6; thus, D is satisfied in both the likelihood and Bayesian senses. 

By Theorem 5.2, the missingness mechanism is also MAR. The sufficient conditions in 

Theorem 2.1 for ignorability are satisfied. □ 

Remark. Ignorability under direct likelihood inference means that L*(0l«obs) yields the 

correct value of the MLE 6 from an observed s, but it does not justify the sampling- 

distribution interpretation of 6; that is, the correct point estimate is identified but no claims 

about its distribution in repeated samples for fixed 6 necessarily follow. It can be shown 

that Rubin's (1976) NS conditions for ignorability under sampling-distribution inference 

would require that the probability of any given missingness pattern be the same no matter 

what values the responses took (Mislevy & Wu, 1988). But since by definition adaptive 

tests produce missingness patterns as a function of the response values that are observed, 

only a degenerate adaptive testing scheme would satisfy this condition. Concluding that the 

item selection mechanism is not ignorable for sampling distribution inference in general 

means that the correct sampling distribution for 6 must be verified with respect to repeated 

administrations of the entire adaptive test. Chang and Ying (1996) consider the sampling 

variance of 6 to the second order derivative of L*, and offer some large-sample conditions 

under which the latter is a reasonable large-sample approximation of the former. 

6.0     Not-Reached Items 

IRT is intended for "power" tests, or those in which an examinee's chances of 

responding correctly would not differ appreciably if the time limit were more generous. 

Time limits are typically chosen to allow most examinees to respond to all items, but some 

examinees don't have time to answer all of them (see Yamamoto & Everson, 1995, for 

analyses of the situation in which examinees respond in accordance with an IRT model 

until time is nearly up, then switch to random responding.) This section concerns the items 

that an examinee does not reach, assuming the following conditions: 

(i)        An LI IRT model would give response probabilities if the examinee had interacted 

meaningfully with all the items. 

(ii)       The examinee has no information about the difficulty or content of the items at the 

end of the test, but has decided to work instead from the beginning of the test 

toward the end, answering all items along the way, until time expires. 
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(iii)      All n items are administered. (If they are not, the results of this section must be 

combined with those of Sections 3 or 4, as appropriate.) 

THEOREM 6.1. Under conditions (i)-(iii), the missingness induced by failing to reach the 

end of the test because of time limitations satisfies MCAR, and therefore MAR as well. 

Proof. Under conditions (i)-(iii), n+1 patterns of missingness can occur: For k = 0,...,n, 

let mw denote the string of n-Jc l's followed by k O's. That is, mw is the missingness 

pattern of an examinee that has not reached the last k items. The missingness process is 
characterized by the examinee speed parameter 0 = (0O > • • • > 0«) > where (pk = 

ProbfM = mw), the probability that the examinee will not reach the last k items, and 

6<I>K     '    [0    otherwise. 

As required for MCAR, g does not depend on u. □ 

THEOREM 6.2. Under conditions (i)-(iii), the missingness induced by failing to reach the 

end of the test because of time limitations is ignorable under direct likelihood inference if all 

values of 6 can occur at all values of (j). 

Proof. The requirement that all values of 8 can occur at all values of (/) is D, as it pertains 

to direct likelihood inference. By Theorem 6.1, the missingness is MAR under conditions 

(i)-(iii). By Theorem 2.1, D and MAR give ignorability under direct likelihood inference.D 

THEOREM 6.3. Under conditions (i)-(iii), the missingness induced by failing to reach the 
end of the test because of time limitations is ignorable under Bayesian inference if p(6, <f>) 

= p{6)p{<p). 

Proof. The requirement that p{6,<f) = p{6)p{<f) is D, as it pertains to Bayesian inference. 

Under conditions (i)-(iii), the missingness is MAR. By Theorem 2.1, these two conditions 

imply ignorability under Bayesian inference. D 

THEOREM 6.4. Under conditions (i)-(iii), the missingness induced by failing to reach the 

end of the test because of time limitations is ignorable under Bayesian inference only if, for 

each k = 0,..., n, the expected value of 0(fc) is constant across all values of 6. 

Proof. For a given not-reached pattern m(A:), Equation (2.9), the NS condition for 

ignorability under Bayesian inference simplifies to J 0W/?f 0(fc)|0kty(A:)because g does not 

depend on u. LJ 
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Remark. Since independence of 0 and 0 implies, but is not implied by, constant 

conditional means for 0, Theorem 6.4 gives a weaker condition than Theorem 6.3 for 

ignorability of not-reached items under Bayesian inference. 

By Theorem 6.2, if conditions (i)-(iii) hold then not-reached responses are 

ignorable under direct likelihood inference; in particular, the correct value is obtained for 

the MLE. For ignorability to hold under Bayesian inference, however, it is further 

necessary that the expected value of each speededness subparameter is constant across all 

values of 9 (Theorem 6.4). Empirical evidence suggests that this is not generally true. 

Van den Wollenberg (1979), for example, reports significant positive correlations between 

percent-correct scores on the first eleven items (which were reached by all examinees) and 

the total number of items reached, in four of six intelligence tests in the ISI battery 

(Snijders, Souren, and Welten, 1963). Bayesian inference about 6 would take this 

relationship into account by using the correct posterior distribution, or 

p(Mv)~p(v|0,0)p(e,0) 

= l\p(m,ü\6,<p)dumis\p{e,<j)) 

= [j g<p (™|"mis. "obs )fe ("mis»"obs )<?"mis ]p(ö, 0) 

= fe{<bs)g^)p{e^) [byMCAR] 

= L*{0\uohs)g<t,{m)p{e,<t>). 

Further, the correct marginal posterior for 6 is obtained as 

p(e\v) = jL*(e\üohs)8<t){m)p{e,(t>)d(t> 

= L\e\üobs)[\g<p{m)p^\e)d(S>]p{d) 

= L*(e\üobs)[jP(m\<!>)p(cp\d)d<p]p(e) 

= L*(e\üobs)p(m\e)p(e) 

~L*(0\üobs)p(e\m). 

7.0     Intentionally Omitted Items 

A missing response is an intentional omission when an examinee is administered 

the item, has time to appraise it, and decides for whatever reason not to respond.  After 

arguing that such omissions can't generally be considered ignorable, we discuss ways to 

deal with them. Several solutions suggested in the test theory literature and an approach 

suggested by the present analyses are considered. 
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7.1     Omitting Behavior and Ignorability 

Used with tests of dichotomous items, a test score T(v) summarizes a pattern of 

rights, wrongs, and omits for the purposes of comparing, selecting, or describing 

examinees. Formula scores take the form 

T(v) = R(v)-C-W(v), (7.1) 

where R(v) and W(v) are counts of right and wrong responses and C, with 0 < C < 1, is a 

constant selected by the test administrator. Setting C = 0 gives number-right scores; C = 1 

gives right-minus-wrong scores; and for multiple choice items with A alternatives, 

C = 1 / (A -1) gives the familiar "corrected-for-guessing" scores. 

THEOREM 7.1.1. For a set of items for which a SMURFLtf2) IRT model holds, 
E{T{U)\6] is increasing in 6. 

Proof. 
E{T(U)\9} = E{R(U) - C ■ W{U)\6} 

= 2 Prob(£/;. = 1|0) - c£[l - Prob(f/7- = 1|0)] 
7=1 7=1 

n 

= (1 + C)£ Prob(tf;- = l|ö) - Cn. 
7=1 

By monotonicity, d' > B" => Prob(f/;- = l|0') > Prob(f/;- = l|0") for all items j, so the final 

equation implies that dJ > 6" => Filii/p'} > E{T{U)\d"}. D 

THEOREM 7.1.2. For any partitioning of items inducing U = (W, U"), E{T(U)} = 

E{T(U')} + E{T{U")}. Similarly, E{T{V)} = E{T(V')} + Spiv")}, 

T{u) = T{u') + T(u"), and T(v) = T(V) + T(v"). 

Proof. These results follow from the linearity of the definition of T. '-' 

Since a correct response to an item gives a higher test score than an incorrect 

response, examinees who wants to obtain high scores will make responses they think are 

correct. How examinees will respond to an item about which they are unsure depends at 

least partly on how the test will be scored (Sabers and Feldt, 1968). They maximize their 

expected scores by answering items for which they think their probability of being correct 

is at least C/(l + C). Under number-right scoring, they should answer every item; under 

corrected-for-guessing scoring, they should answer those which they think the probability 
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is at least 1 / A; and under right-minus-wrong scoring, they should answer those which 

they thinks the probability is at least 1/2 (C/(l + C) when C=l). Examinees may differ in 

the accuracy of their estimates, their confidence about them, and their propensities to omit 

rather than make responses about which they are uncertain. Such characteristics of an 

examinee, as they are evoked under given test administration conditions, constitute the 

missingness parameter 0 in the case of intentional omission. For example, analyzing 

responses to items that examinees originally omitted under right-minus-wrong scoring, 

Sherriffs and Boomer (1954) did find that about half of the omitted responses would have 

been correct among examinees who scored low on a risk-aversion scale, but nearly two- 

thirds would have been correct among examinees with high risk-aversion scores. Intuition 

and empirical evidence (e.g., Stocking, Eignor, & Cook, 1988) suggest that the following 

three conditions typify omitting behavior in educational testing: 

(iv)      For any given 6 and a given item, examinees are more likely to omit items when 

they think their answers would be incorrect than items they think their answers 

would be correct. 

(v)       As 0 increases, an examinee is more likely to recognize when a response would be 

correct, and are thus less likely to omit it; i.e., for all items j, 

Ö" >?=> 8w»(MJ = 0lUJ = l)< 8*AMJ = 0]UJ = l)> 

where 6 has been made explicit as a subscript of g to emphasize the dependence of 

omitting behavior on 6. 

(vi)      Similarly, as 6 increases, an examinee is more likely to recognize when a response 

would be incorrect, and are thus more likely to omit it; i.e., for all items j, 

V >e'=> 8tAMJ = 0]UJ = °) > 8*AMJ = 0]UJ = °)- 

THEOREM 7.1.3. For a given wobs and an m in which missing responses are due to 

intentional omission, the missingness process is MAR only if this missingness pattern is 
equally likely for all values of wmis. 

Proof. This follows immediately from the definition of MAR. □ 

Remarks, (a) If Condition (iv) above holds, examinees are more likely to omit items when 

they think their responses would be wrong rather than right. MAR would imply that their 

perceived probabilities of correctness are independent of the probabilities given by the IRT 

model; that is, Conditions (v) and (vi) could not also hold, (b) MAR (along with D) is 

merely sufficient for ignorability, and ignorability can hold when MAR does not. If 
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ignorability does hold, though, the following counter-intuitive condition holds for expected 

score of the omitted responses. 

THEOREM 7.1.4. Suppose a SMURFLtf2) IRT model holds in a domain of items, and the 

missingness induced by intentional omission is ignorable under likelihood or Bayesian 

inference. For any given pattern of omits (m) and responses to observed items (wobs), the 

probability of this missingness pattern is (a) constant with respect to 9, even though (b) 

the expected score of the missing responses T(Umis) is increasing with respect to 8. 

Proof. Regarding (a): The NS condition for ignorability under likelihood inference (2.8) 

requires that for each value of </>, the value of Eu^ jg^(mlunäs,üobs)\m,wobs, 8,0j (the 

probability that missingness pattern m will be observed given wobs, 0, and 8) is constant 

with respect to 6. Regarding (b): By local independence, the distribution of C/^ (given 

fh) depends on 0, and not on 0 or wobs. By Theorem 7.1.1, E{T(Umis)\0], is increasing 

in 8. The same argument holds for ignorability under Bayesian inference, since, by 

Theorem 2.3, it is required that the expectation of (2.8) over 0, or (2.9),is constant with 

respect to 8. L-I 

Remark. Theorem 7.1.4 says that if ignorability holds under a SMURFIJK2) IRT model, 

high-ability examinees are just as likely to produce any given missingness pattern as low- 

ability examinees (given wobs), even though the missing responses have a greater expected 

contribution to their total test score. This result belies (iv)-(vi), since higher-ability 

examinees are more likely to make correct responses to the missing items, more likely to 

recognize they are correct, and more likely to make the responses rather than omit them. 

COROLLARY 7.1.5. Suppose a SMURFLtf2) IRT model holds for a one-item domain, and 

the missingness induced by intentional omission is ignorable under likelihood or Bayesian 

inference. The probability that the response will be omitted is constant with respect to 8 

even though the probability that it will be answered correctly increases with 8. 

7.2     Modeling Intentional Omissions 

Since ignorability is not generally satisfied for direct likelihood inference, it is 

necessary to base inference on p(v\ 8, <f) when omitting is a possibility. Accepting that 

omits are not ignorable means g^{m\u) depends on «mis, and cannot be determined from 

observations of V alone. Implementing any approach for modeling intentional omission 

thus requires that the analyst must either specify the mechanism of the omitting process a 
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priori, or estimate it from an experiment with the same items and similar examinees in 

which the values of item responses that were originally omitted are subsequently obtained. 

Section 7.2.1 presents an approach from the perspective of Rubin's model, and Sections 

7.2.2-7.2.4 evaluate various alternative approaches that have appeared in the literature. 

7.2.1 An Approach Based on Rubin's Model 

Rubin's framework begins with a full model for response and omission, (UM), 
using the form ?rob(U = u,M = m\6, <j>) = g^{m\u)fe{u) with fe(u) an LI IRT model. 

This section sketches some specifics about how this approach might be implemented, 
bearing in mind that g^ (m\u) cannot be estimated from observations of Valone because its 

values depends on umis. The main ideas are (i) viewing the missingness parameter <p as 

the concatenation of item-specific missingness parameters T]j and examinee-specific 

parameters co, and (ii) assuming conditional independence across the expanded item 

response \Uj,m^ given the extended examinee parameter (6,(o) and extended item 

parameters [ßj, r}^. Specifically, it may be posited that 

Prob(U = u,M = m\e,<l))=flglt)(mj\uj)fe(uj), (7.2) 
7=1 

where 

g<l>(mßuj) = ProbfMy = mjpj - Uj,6,co, 77,-). (7.3) 

For dichotomous items, one plausible form for (7.3) is a pair of linear logistic 

regression functions for the probability of omitting incorrect and correct responses, given 
an items' tendency to provoke omission (Tfy), the examinee's ability (6), and the 

examinee's tendency to omit (co): 

Prob (Mj = 0\Uj =Uj,e,a>,T,j ) = \)J        J° '        J 

[¥(^•11 +»7/120 +fl>)   if«/ =1, 

where *¥(z) = exp(z)/[l + exp(z)]. More ambitious models would allow for the 

dependence of g on covariates v as well, since empirical evidence suggests that omitting 

behavior can vary systematically with factors such as gender and culture (e.g., Wolf, 1977, 

p. 33). With g sufficiently specified in this or some other manner, and in conjunction with 

an IRT model, likelihood and Bayesian inference about 6 from v can proceed from (2.4) 

or (2.5) respectively. 
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7.2.2 Filling in the Blanks 

Lord (1974) suggested that omits on dichotomously-scored multiple-choice items 

under guessing-corrected scoring can be handled with standard IRT estimation routines if 

they are treated as fractionally correct, with the value c=l/(# alternatives). He assumed 

"rational" omitting behavior: Examinees omit items only if their chances of responding 

correctly would have been c, so Probf Uj = 1 Mj = Oj = c for all items and all 0. Now the 

log likelihood to be maximized to obtain 6 if there is no possibility of missing responses is 

t(e\u) = öe t\üj logPj(e)+(I - üj)iogQj(e)\ (7.4) 
7=1 

where Pj(d)=ProblUj =l\d,ßj\ and Qj(6) = l-Pj(6). Lord proposed maximizing the 

pseudo log likelihood given by 

£**{e\l) = öei\wjlogPj(d) + (l-Wj)logQj(e)l (7.5) 
7=1 

where w • = w,- if m;- = 1 and Wj = c if mj = 0. 

LEMMA 7.2.1. The likelihood based on the hypothetical complete data can be written as 

the product of two factors, one of which involves only u and 6, and not the missingness 

process or m. 

Proof. By definitions and elementary properties of probability, 

Prob(*7 = u,M = m\d,(j)) = Prob(M = m\U = u,d,(j))Fvob(U = w|0,0) = g,p{m\u)f6{u). 

Viewed as a likelihood, 

L(6,(l)\u,m) = ÖQ^d^l^rnjx 6eL2(d\u), 

with L[{d,<$>\u,m) = g<j)(m\u) and 1^(6^) = fe{u). D 

THEOREM 7.2.2. Consider a domain of multiple-choice items for which a SMURFLtf2) 

IRT model holds, but for which examinees may intentionally omit responses. If 

ProbiUj =lMj=6\ = c for all items and all 6, then Lord's (1974) pseudo log likelihood 

(7.5) is the expectation of the log of a conditional likelihood function for 6; specifically, 

f\6\v) = ^^{^12(01«)!«^}, 

where Li{0\u) is as given in Lemma 7.2.1. 
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Proof. 
£i«^{log^(ÖlMKbs} 

= E„ I  [üjlogPj(d) + (l-üj)logQj(d)]+   I   [ujlogPj(0) + (l-Uj)logQj(e)] 
/■mj=l j:m.=0 

=   I   [üj\ogPj(d) + (l-üj)\ogQj(8)] + EuJ   I   [M;.logP;.(Ö) + (l-My)logß;.(Ö)| 
j-mj=l [j-"ij=0 

=   I  [üj\ogPj(d) + (l-üj)\ogQj(e)] +   l[clogP;(0) + (l-c)logö;(ö)]. 
j':m.=l j:mj=0 

This final expression, multiplied by Se, is Lord's t   (0lv). D 

Remarks, (a) It is a standard technique in likelihood estimation to eliminate nuisance 
variables from a problem by factoring the likelihood, and basing inference on only those 
factors which do not involve the nuisance variable. Doing so yields "limited information" 
inferences, so called because they forego information about the target parameter contained 
in the neglected factors. In this case, Lord's solution does not use information about 6 
conveyed by m through L\. (b) Maximizing the expected value of the log likelihood of Li 
with respect to the missing responses is an instance of the general approach to inference 
with missing data described in Dempster, Laird, and Rubin (1977); specifically, it is a one 
step "EM" solution, (c) Taken together, (a) and (b) justify Lord's (1974) maximization of 
(7.5) as an "expected limited-information" MLE for 6. 

The foregoing analysis yields insight into other treatments of omits that impute 
values for uTris. Supplying random responses that are correct with probability c provides a 

crude numerical approximation of (7.5), leading to a maximizing value which has the same 
expectation as when the integration is carried out in closed form in the proof of Theorem 
7.2.2. This practice is justified by the same assumptions as Lord's (1974) approach. 
Supplying incorrect responses for omits also leads to an "expected limited-information" 
MLE for 6, but under the assumption that responses to omitted items would surely have 
been incorrect; that is, ProbWj = I\MJ = OJ = 0 for all items and all 6. This is implausible 

for multiple-choice items for which even the least able examinees have nontrivial 
probabilities of success through guessing, so in this case supplying incorrect responses for 
omits biases inference about 6 downward. 
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Lord addressed "rational" omitting behavior, in that the expectation of correctness 

for an omitted response is always c, the value associated with the optimal omitting strategy. 

As noted, however, studies of responses to items originally omitted show that not all 

examinees behave in this manner. The tendency to omit when probabilities of success may 

be higher than c and can be associated with personality characteristics, demographic 

variables, and level of ability. This approach biases estimates of 8 downward for risk- 

aversive examinees. Although Section 7.2.1 showed how such dependencies can be taken 

into account, it is by no means certain that this should be done; to do so effectively adjusts 

scores upward or downward in accordance with examinee background characteristics, 

which may be objectionable on the grounds of fairness. Assuming rational omitting 

behavior in scoring rules, and making the rules and optimal strategies as clear as possible 

to examinees, is probably preferable when test scores are used to make sensitive placement 

or selection decisions. 

7.2.3 Lord's (1983) Model for Omits 

Lord's (1974) treatment of omits as fractionally correct neither presented nor 

exploited the full likelihood induced by the data. Lord's (1983) model for omits maintains 

the context of guessing-corrected scoring of multiple-choice items with A= lie alternatives, 

but offers additional structure for the response process. The model first assumes that an 

examinee either feels a preference for one of the alternatives or is totally undecided among 

them. The proportion of examinees with ability 6 feeling no preference on Item / is 
Rj{6). If a preference is felt, a response is made; and of the responses made by examinees 

with ability 6 who feel a preference, the proportion correct is Pj(B). If no preference is 

felt, the examinee will either omit the item with probability co (an examinee missingness 
parameter), or respond at random. Note that (6,(0) constitutes the missingness parameter 

0 in Rubin's notation. Responses and omitting decisions are assumed independent over 

items, given 6 and CD. 

This model does not address the correctness or incorrectness of hypothetical 
responses to omitted items; that is, Uj is undefined when Mj = 0. In order to analyze the 

approach from Rubin's (1976) perspective, we extend it in concert with Lord's hypothesis 

that an examinee who omits is totally undecided among the alternatives, by positing the 

following condition: 
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(vii)     For all items j, Proof Uj = \Mj= 0,0, co) = c and 

Pwb(Uj = 0\MJ = 0,0,©) = 1 - c for all 0 and co; 

C/mis is thus independent of 0 and to. Assuming Condition (vii), the tree in Figure 3 

shows the conditional probabilities of arriving at [mj,u^ in the different possible ways. 

[Figure 3 about here] 

The likelihood function for the observed data can then be written as follows: 

Prob(V = v|0,6>) 

= Prob(M = m\e, co)j f[ Prob(j7 • = u • 6, co, rh: )dumis 

= {Prob(M = A|0,fl>)} 

= {Prob(M = m|0,ö))} 

oc{Prob(M = m|0,ö))} 

Y[Prob{uj=üj\d,(0,Mj = l) 
j:rhj=\ 

Y]?XOb(Uj = Üj\e,0),Mj = l) 
j:rhj=l 

Y[Prob(Uj = üj\e,0),Mj = l) 
j:rhj=l 

J YlProb(Uj = Uj\d,co,Mj = 0Jdur 
j:/hj=0 

j:mj=0 

il-m nK(C['-^f 
j-i 

U[pj"(e,m)f'[i-pr(e,m)tü' 
j:rhj=l 

(7.6) 

where Pj*(6,co)=Prob\Uj = 16,co,Mj = l), or the conditional probability that a response 

will be correct given that it is observed, is the normalized sum of making a correct response 

when a preference is felt and of guessing correctly when a preference is not felt but a 

random response is made: 

P;*(0,ü>)=[i - ^(0)]_1{[i - Rj(d)]p*(d)+c(i - co)Rj(e)}. 

Once V is observed, (7.6) provides a foundation for likelihood and Bayesian 

inference about 0 and (0. Lord suggested that the model could be implemented by 
specifying functional forms for P* and Rj, such as the 3-parameter logistic IRT function 

for Pj and the 2-parameter logistic with a negative slope for Rj. 
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THEOREM 7.2.3. Assuming Condition (vii), the model for Uj implicit in Lord's (1983) 

model for omits can be written in terms of the unidimensional ability variable 6 as follows: 

fe("j) = 
cRj{9) + 

{l-c)Rj(0) + 

l-Rj(d) Pj(e) if Uj = 1 

'i-Rj(e)\i-p*j(e)] ifuj = o 
(7.7) 

Proof.       p(Uj = 1|0, fl>) = X P{Uj = l\d, CO,Mj = kjp(Mj = k\6, co) 

= P(UJ = \\e,(o,Mj = I)P(MJ = 1\0,CD) + 

P{UJ = \\e,co,Mj = O)P(M^ = o\e,(o) 

= {c(l - co)Rj(6) + [l - Rj(e)]p*(e)} + co)Rj(d) 

= cRj(e)+[i-Rj(o)]Pj(e). 

Note that co drops out of the expression. Then 

p(Uj = O|0, co) = 1 - P(Uj = 1\6, co) 

=i-d?/(ö)-[i-Ä/(ö)]p;(0) 

= (i-c)Rj(6)+[i-Rj(e)][i-p*(e)]. D 

Remark. Lord points out that if co=Q for all examinees (there is no possibility of omitting), 

then the resulting IRT model is just (7.7). In a manner described by Samejima (1979), the 
operating characteristic curve for a correct response, or Probf Uj = l\&), need not be 

monotone increasing in 6. Very low ability examinees would feel no preference at all, and 

answer correctly at a rate equal to c; moderate-ability examinees might tend to feel a 

preference for a clever distractor and answer correctly at a rate lower than c; and high- 

ability examinees would tend to feel preferences and respond correctly. 

Lord's focus on the nonignorable nature of intentional omissions is apparent in the 

following result. 

THEOREM 7.2.4. Consider the case of one item, or n=l. (Subscripts on R, P*, M, etc., 

may thus be supressed.) Under Lord's (1983) model, augmented by Condition (vii), 

omitting is ignorable with respect to direct likelihood inference about 6 only under the 

degenerate conditions that either 
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(a) o)=0 (i.e., there is no possibility of omitting); 

(b) both R(8) andP (6) are constant with respect to 8 (i.e., neither the tendency to 

feel a preference leading to a response, nor the chances of an observed response 

being correct, depend on 6); or 

(c) R(9)=0 (i.e., nobody ever feels a preference among responses). 

Proof. If 63=0, there is no possibility of omitting, so M = 1, U = Uobs, and, for all uobs, 

Prob(M = \\üobs,6,(o)=\. Then 

Prob(V = v|0,fi>) = Prob(M = 1,U = uobs\8,co) 

= Prob(M = l\U = uobs,6, ©)Prob(£7 = uobs\6, co) 

= lxProb(£7= uobs\8,co) 

= ?Tob(U = uobs\d), 

and omitting is (trivially) ignorable. 

Now suppose co *■ 0. Theorem 2.2, NS conditions for ignorability under 
likelihood inference, requires that the parameter spaces of 8 and 0 are distinct; and that for 

each <f>, the expression in (2.8), or Eu\g^{in\umis,üohs)\fh,üohs,8,^\, is constant with 

respect to 8. As for the requirement of distinctness: In general, 8 is included in 0 in 
Lord's model (that is, (f) = (8,co)), since the probability that an examinee with ability 8 

will omit Item j is coRj{8). If co *■ 0, then only when Rj(&) is constant with respect to 8 

for all items do the parameter spaces of 6 and 0 become distinct, since <p then simplifies 

to co alone. Thus, for distinctness to be satisfied for direct-likelihood ignorability when 
n=l and co * 0, it is necessary thati?(0) is constant with respect to 8. 

As for the further requirement that (2.8) be constant with respect to 8, we consider 

separately v = (0,*), (1,1), and (1,0), since for ignorability to hold in general, it must hold 

for each potential pattern of observations. The required expressions are derived from 

Figure 3. 

(0.*): If v = (0,*), then 

£«™s {S<P (™l "mis • "obs )K «obs .0,0} 
= Prob(M = 0\U = 0,8, ö>)Prob(C/ = O|0, co) + Prob(M = 0\U = 1,8, co)Prob(U = 1|0, co) 

= Prob(M = 0, U = O|0, co) + Prob(M = 0, U = 1|0, co) 

= R{8)co(\-c) + R(8)coc 

= R{8)co. 
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This expression is in fact constant in 6 if R(6) is constant in 6, so ignorability holds 

under this condition if the observation is an omitted response. We now see, however, that 

this is not sufficient when the observation is an observed right or wrong response. 

(T.l) and (LO): If v = (1,1), then there is no umis to integrate over and 

£"mis {8<t> ("*' "mis. «obs )\m, «obs > ö> 0} = Prob(M = l\U = 1,0, co) 

_?rob(M = \,U = \\e,co) 

Prob(tf = l|0,o>) 

= \\-R{d)\P*{d) + cR{e){\-co) 

[\-R{d)]P*(6) + cR(d) 

Similarly, if v = (1,0), 

Eu^{g^rh\umisMohs)\m,üohs,e,(t>} = ?rob(M = l\U = 0,6,0)) 

Prob{M = l,U = 0\9,co) 

?Tob(U = 0\6,co) 

J\-R(9)][l-P*(e)] + (l-c)R(d)(l-(0) 
[l-i?(0)][l-P*(0)]+(l-c)tf(0) 

Given that co * 0, both (7.8a) and (7.8b) are constant with respect to 6 if either R(6)=0 

or both R(6) and P*(0) are constant with respect to 6 (the degenerate case in which the 

item conveys no information whatsoever about 9). D 

7.2.4 Nominal Category Models 

IRT models for multiple-category items give probabilities of item responses as 

conditionally independent functions of 6 (e.g., Bock, 1972; Samejima, 1979; Thissen & 

Steinberg, 1986). These models have sometimes been used for data with intentional 

omissions, with an omit treated as one more possible response to a multiple-choice item. 

Lord (1983) expresses reservations about this practice, "... since it treats probability of 

omitting as dependent only on the examinee's ability, whereas it actually depends on a 

dimension of temperament. It seems likely that local unidimensional independence may not 

hold" (p. 477). The following analysis makes Lord's concerns more explicit. 

The character of this approach regarding omission are seen most easily in the case 

in which all incorrect overt responses are denoted into a single category. Suppose the 

following conditions hold: 
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• (viii)    A SMURFLI(2) IRT model in d governs U; 

(ix)      0 characterizes an examinee's tendency to omit, via gJmAuj), and 

(x)       \Uj,rtijJ are conditionally independent over items given (6,(j>); that is, 

Prob(t/ = u,M = m\6, </>) = Y[?rob(Uj = Uj,Mj = m,|0, </>), 
;' 

which in turn implies 

Prob(y = v\9, <t>) = riProb( V,- = Vj\d, <p). (7.9) 
j 

Recalling that the values 0, 1, and * of v indicate observed wrong, observed right, 

and omit, we obtain the multiple-category model probabilities f*e as follows: 

/;(v;=o) = Prob(^.=O,M;. = l|0) 

= lfe[Uj = 0)gt(Mj = l\Uj = 6)p(4*e)dh 

fl(Vj = l) = PTdb(Uj = l,Mj = l\e) 

= ffe(Uj = Ijg^Mj = l\Uj = l)p{<f>\e)d<l>, 

(7.10a) 

(7.10b) 

and 

f*e(Vj = *) = Prob(Uj = 0,Mj = 0|6>) + Prob(f/y- = l,Mj = 0|6») 

= jfe(Uj=0)g<l)(Mj=0\Uj=0)p{<l)\8)d(P (7.10c) 

+jfe(Uj = l)g^Mj = 0\Uj = l)p(<p\0)d<t>. 

THEOREM 7.2.5. Under Conditions (viii)-(x) above, the multiple-category response 

functions in 6 for v, or (7.10a)-(7.10c), exhibit conditional independence over items only 
if all examinees with each given 6 have the same value of 0. 

Proof. The conditional probability of Vj given 0, marginal with respect to 0, is 

Prob(v;- = VjW) = j?rob(Vj = Vj\6, <f)p{<l>\ d)d<j>. 

If local independence given 0 is to hold across items, it follows that 

Prob( V = vl d) = n j Prob( V,. = Vj\ 6, (j>)p(<p\ 6)d(j). (7.11) 

But marginalizing over <p in Prob(V = vl 0, co) to obtain Prob(V = vl 0) yields 

Prob( V = vl 0) = |Prob( V = vl 0,0)p(0l 0)<fy 

= jnProb(y7. = Vj\d,<i>)p{<i>\e)d<i>. (7-12) 
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Expressions (7.11) and (7.12) differ only in that the order of integration and multiplication 

are interchanged, and are equal in general only if (j) is constant for each given value of 6 .D 

8.0 Examinee Choice of Items 

The instructions to one section of the College Entrance Examination Board's 1905 

German test read, " Answer only one of the following six questions," and the 1905 Botony 

exam included a section of ten items, of which students had to answer any seven (Wainer 

& Thissen, 1994, p. 161). In this section we consider tests that (a) incorporate choice in 

such a manner and (b) posit a SMURFLtf2) IRT model. These tests present problems of 

inference with respect to the missing responses to non-chosen items that are formally 

identical to those associated with intentional omissions: The students examines all items, 

consider their chances of success on each, and chose which to answer in a manner that may 

depend on their actual chances of success through 6. The only difference is the constraint 

on possible missingness patterns, which is irrelevant to Rubin's ignorability conditions. 

Section 8.1 recasts the results of Section 7.1 in the context of examinee choice of items, 

concluding that if an underlying SMURFLtf2) IRT model is to be maintained, it is 

necessary to model missingness and response jointly. Section 8.2 discusses how the 

generally-nonignorable missingness can be modeled in the IRT context. 

8.1 On the Ignorability of Responses to Non-Chosen Items 

As with intentional omits, motivated examinees facing choice situations attempt to 

make choices and responses that maximize the score they expect to receive. We assume a 

SMURFLI(2) IRT model, and consider test scores in the form of counts of correct response 

R(v).   Since a correct response to an item gives a higher test score than an incorrect 

response, examinees who want to obtain high scores will chose an allowable missingness 

pattern in which they can make responses they think are likely to be correct. As with 

omits, examinees' perceived probabilities of correct response are not necessarily the same 

as those given by the IRT model, and examinees may differ in the accuracy of their 

estimates. Such characteristics of an examinee constitute the choice parameter (j). The 

intuition, supported by studies such as that of Wang, Wainer, and Thissen (1993), again 

suggests that examinees with high abilities are typically better at projecting their expected 

scores under different choice patterns and responding to item configurations that lead them 

to higher scores. 
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THEOREM 8.1.1. For a given in and «obs, the missingness process induced by examinee 

choice is MAR only if this missingness pattern is equally likely for all values of uMs. 

Proof. This follows immediately from the definition of MAR. □ 

Remark. If examinees are more likely to avoid choosing items when they think their 

responses would lead to lower scores, MAR implies the untenable belief of independence 

of their perceptions of correctness from the probabilities given by the IRT model. 

Assuming a monotone unidimensional IRT model and considering a given 

missingness pattern m induced by examinee choice, the NS conditions for ignorability in 

Theorems 2.2 and 2.3 say that for the probability of m is the same for all 8 even though 

the expected number-right score of the non-chosen items, or £'{i?(i7mis)|ö}, is increasing 

in 8 (by Theorem 7.1.1). That is, high-ability examinees are just as likely to produce this 
choice pattern as low-ability examinees (given wobs), even though the associated responses 

have a greater expected contribution to their total test score and the maximum 'chosen M 

would be higher. A counter-intuitive result is easiest to see when n=2: 

THEOREM 8.1.2. Suppose a SMURFLK2) IRT model holds in a domain consisting of two 

items (/=1,2), and the missingness induced by "answer any one of two" format is ignorable 

under likelihood or Bayesian inference. Suppose further that U^O. Then (a) the 

conditional probability that an examinee will choose to present this response rather than the 
response to U2 must be constant with respect to 6, even though (b) Prob( U2=l) is 

increasing with respect to 8. 

Proof. The NS condition for ignorability under likelihood inference (2.8) requires that for 

each value of (/>, the value of Eu^ [g0 (ml umis, wobs )\fh, wobs, 8, </>} (the probability that 

missingness pattern m will be observed given wobs, 0, and 8) is constant with respect to 

6. The theorem addresses the case in which n=2, m = (1,0), and v = (0,*). Because the 

IRT model is strictly monotonic, the probability of the missing response being correct is 

increasing in 8. The same argument holds for ignorability under Bayesian inference, 

since, by Theorem 2.3, it is required that the expectation of (2.8) over 0, or (2.9), is 

constant with respect to 8. □ 
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8.2     Modeling Examinee Choice Within the IRT Framework 

This section addresses the information in examinee-choice test responses about 0. 

Because missingness due to examinee choice is not generally ignorable, appropriate 
inference under the IRT framework requires working from v rather than simply wobs. 

Wainer and Thissen (1994) point out that as with omits, the correct model cannot be 

ascertained from observations of v alone. Supplemental data collections of (u,m), as was 

done in Wang, Wainer, and Thissen (1993) suffice to build a model. This study asked 

examinees to respond to both of two items and to also indicate which one they would have 

chosen if only one were to have been scored. From such data it is possible to estimate both 
fe{u), the IRT model, and g^{m\u), the choice model. Note that g must assign a 

probability of zero to any m other than the (n-choose-AO=n!/[AH (n-JV)!] patterns consistent 

with "answer any N of n" format. 

THEOREM 8.2.1. The likelihood function for induced 6 under an LI IRT model when 

responses are observed under the "answer any N of n" format is the weighted average of all 
possible response vectors u consistent with wobs, with the weights associated with each 

pattern of non-observed responses being the probabilities of the observed choice pattern 
given wobs and the non-observed responses. 

Proof. This is a specialization of (2.2) to the context of choice. The likelihood function 

induced by vis L(0,0lv) = ^J/eOw"obs)^'"lMmis>"obs)öfMmis- ^ 

8.2.1 Special  Cases 

This section gives g0(räl«mis,üobs) for some special cases of choice behavior with 

SMURFLI(2> items and "answer any N of n" format. 

SPECIAL CASE #1: An MC AR choice mechanism. If an examinee's choice of items is 

independent of 6, then g assigns equal probability to all m consistent with the instructions 

and zero to all others: 
\lTl    ifXm;=iV 

g(j)(m\u) = l j (8.1) 
[ 0       otherwise, 

where £=(n-choose-A0. The likelihood under ignorability can be expressed as the equally- 
weighted average of all complete response patterns consistent with wobs: 

L(6\v) = 8e J/eKüs^obsK'^mis' (8-2> 
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which is proportional to L*(0l«obs). In this situation, wobs is representative of an 

examinee's typical performance, despite the choice format. 

SPECIAL CASE #2: Fully efficient choice, unique maximum score. Suppose an examinee 

has perfect knowledge of ü and chooses m in such a way as to maximize the test score, 

r(v). If the highest possible score is obtained by a unique pattern v* = (w*bs,m*), then 

1    ifr(v) = r(v*)andX™ = # 
V   '        j (8.3) 

0   otherwise. 

By Theorem 8.2.1, L(d, 01 v) in this case is an equally weighted average of all 

/ö(Mmis'"obs) possibilities in which any other choice pattern would have yielded a lower 

score than T\v*j. In this case and the next, wobs represents maximal performance. 

SPECIAL CASE #3: Fully efficient choice, nonunique maximum score. Suppose that an 

examinee has perfect knowledge of ü and chooses m in such a way as to maximize the test 

score, r(v). If v* = [uohs,m*} is one of if patterns that yields the highest score from ü 

and the examinee chooses one of these patterns at random, then 

H~l    if T{v) = r(v*) and £m; = N 
^(wl"mis'Mobs) = (8.4) 

0      otherwise. 

SPECIAL CASE #4: Partially efficient choice. Suppose that an examinee seeks to choose m 

in such a way as to maximize the test score, T(v), but has imperfect knowledge of ü. One 

specification of g that takes this intention into account while softening its effect is a linear 

combination of the ignorability weights (8.1) and the efficient-choice weights, namely 

(8.3) or (8.4) as appropriate. For a non-unique maximum score, for example, 

^HMmis.Mobs) = < 

0/T1 + (1 - Q)K~X   if r(v) = T[v*) and 5>7- = N 
j 

{l-<t>)K~l        if T(v)<T(v*) and Z™j = N       (8.5) 

0 otherwise, 

with 0 < <p < 1. There are K patterns with iV observed responses, H of which yield the 

maximal score and K-H of which yield lower scores; it can be verified that the probabilities 
in (8.5) sum to 1 over the K allowable patterns. Efficient-choice weights that presume wobs 
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represents "maximum performance" are thus mixed with ignorability weights that presume 

it represents "typical performance". 

Remark. Special Case #4 might apply to a not-uncommon practice with IRT: the 

administration of "customized tests," in which a school or district selects items from an 

item bank for which item parameters have been estimated from a non-targeted reference 

population of examinees (Yen, Green, & Burket, 1987). The items of a customized test are 

chosen because they are more relevant to the local curriculum than the non-chosen items, so 

the administrator is effectively acting as an agent of the local students in a choice exam. If 

this choice is ignored, over-estimates of 6 result in a manner shown in following example. 

8.2.2 A Numerical Example 

This example concerns "answer any iVof n" format with iid SMURFLtf2) items 

following an IRT model of the form fe(uj) = .2+.Suj exp(0)/[l + exp(0)], with 

p(6) = N(0,2) and number-right scoring. In particular, we consider n=5 and N=2, for 

v = (1,1,*,*,*) and v = (1,0,*,*,*) under three alternatives to modeling the choice process. 

The first panel in Figure 4 gives the likelihood functions for the eight possible Us 
consistent with v = (1,1,*,*,*).   L(6\v) is a weighted average of these, with weights 
depending on how the choice process is modeled. Table 1 gives weights g^(m\u) under 

ignorability, efficient choice (8.4), and a 9:1 mixture of efficient-choice and ignorability 

weights via (8.5). The ignorability weights are all (S-choose^)"1, or .10. For efficient 
choice, gA (ml u) depends on the number of different uobs with a score of 2 that could be 

made from the complete pattern, or H(u). When u = (1,1,0,1,1), for example, H(u)= 

(4-choose-2)=6, so H(u)~l=.\61 appears in the efficient-choice column for this pattern. 

The resulting L(0lv)s appear in the second panel of Figure 4. The likelihood under 

efficient choice flattens out above 0, whereas the ignorability likelihood continues to rise 

rapidly; examinees above zero are likely to obtain at least two l's in U, so this 

observational scheme provides little evidence for distinguishing among them. The 
distributions p(d\v) appear in the final panel of Figure 4, and the posterior mean and 

standard deviation for 0 in each case appear in Table 1. The flattened likelihood for the 

efficient-choice condition leads to a much lower posterior mean and a somewhat wider 

posterior standard deviation than are obtained under ignorability. 

[Table 1 & Figure 4 about here] 
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Similar results for v = (1,0, *, * *) appear in Table 2 and Figure 5. Efficient-choice 

again yields a much lower posterior mean than the ignorability condition, but now, 

interestingly, it leads to a smaller posterior standard deviation. This is because under 
efficient choice, observing «obs with only one correct response means that the three 

missing responses must all be zero; i.e., under efficient-choice, observing v = (1,0,*,*,*) 

is equivalent to observing u = (1,0,0,0,0). 

[Table 2 & Figure 5 about here] 

In this example, examinee-choice makes inference about 6 less efficient for higher 

values, where the question is about the average value of up, but more efficient for very low 

values where the question is more one of the existence of any uß that are 1. Departure 

from efficient-choice behavior erodes this potential advantage. Results such as these led 

both Wainer and Thissen (1994) and Bradlow and Thomas (in review) to conclude that 

examinee-choice and IRT-based inference are an unattractive combination. IRT-based 

inference works well when one is interested in typical performance in a domain of 

exchangeable tasks, to be characterized by a single ability variable 6; examinee-choice is 

attractive when it is not typical performance in a domain of exchangeable tasks, but the 

maximal performance in special circumstances best known to the examinee. An alternative 

modeling approach for such circumstances requires the specification of a common 

framework of evaluation into which performances in different contexts can be mapped 

(e.g., the Advanced Placement Studio Art portfolio assessment, in which students have 

considerable choice as to media, style, and subjects; see Myford & Mislevy, 1995). 

9.0     Summary 

In practical applications of item response theory (IRT), there are several reasons 

that item responses may not be observed from all examinees to all test items. We used 

Rubin's (1976) theorems to determine whether ignorability holds under direct likelihood 

and Bayesian inference about examinee parameters 6 under six common types of 

missingness in IRT, with item parameters known. Ignoring the missingness process under 

direct likelihood inference means using a pseudo-likelihood that includes terms for only the 

responses that were observed, without regard for the processes by which they came to be 

observed. The resulting inferences are appropriate if the pseudo-likelihood is proportional 

to the correct likelihood that does account for the missingness process. The missingness is 

ignorable with respect to Bayesian inference if the correct posterior is proportional to the 
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product of the pseudo-likelihood and an appropriate prior distribution. Our findings are 

summarized below. Table 3 highlights the results on ignorability. 

[Insert Table 3 about here] 

Alternate test forms. When an examinee is assigned one of several alternative test 

forms by a random process such as a coin flip or a spiraling scheme, the process that 

renders missing the responses to items on the forms not presented is ignorable under both 

likelihood and Bayesian inference for 6. 

Targeted testing. When covariates such as educational or demographic status are 

used to assign an examinee one of several tests that differ in their measurement properties, 

the resulting missingness on forms not given is ignorable under direct likelihood inference 

for 6, but not under Bayesian inference unless the prior information about examinees that 

led to differential assignments is conditioned on. 

Adaptive testing. The missingness caused by the selection of items to present to an 

examinee based on observed responses to previous items is ignorable under both direct 

likelihood and Bayesian inference. It should be noted that ignorability under direct 

likelihood inference means that the correct points are identified as MLEs of 8, but the usual 

MLE properties under sampling-distribution inference need not hold because the 

probabilities of missingness patterns depend on the values of observed responses. 

Not-reached items. When some examinees do not interact with the last items on a 

nearly unspeeded test, the not-reached process is ignorable with respect to direct likelihood 

inference about 6. This missingness process is not ignorable under Bayesian inference 

unless speed and ability are independent. 

Omitted items. When examinees are presented items, appraise their content, and 

decide for their own reasons not to respond, the missingness is not generally ignorable. 

Inferences must be drawn from a full model for the joint distribution of missingness and 

item response, as sketched in Lord (1983). Under the assumption that examinees are 

perfect judges of their chances of responding correctly, and omit only if it is in accordance 

with the strategy that maximizes their expected score, Lord's (1974) treatment of omits as 

fractionally correct under a standard IRT model can be justified as providing the expectation 

of a conditional term in the full likelihood. This procedure is readily incorporated into 

standard complete-data IRT algorithms and avoids having to specify the full likelihood, but 
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foregoes information about examinee and item parameters conveyed by the observed 

pattern of missingness. 

Examinee choice of items. Insofar as ignorability conditions are concerned, 

examinee choice is equivalent to intentional omission. Choice is not generally ignorable, 

and treating it as such typically overestimates the information about 0. This includes 

choice made by a test administrator on behalf of examinees—e.g., school officials pick out 

a "customized test" aligned to their curriculum, but using item parameters estimated from a 

non-targeted reference population. It is possible, with supplemental data from 

experiments, to estimate the typically lower and more diffuse likelihoods for 6 arising 

from choice in IRT domains, but the administration scheme of examinee choice of tasks is 

ill-suited to domain-referenced IRT inference. Conditional evaluation of choice 

performances within a common framework of evaluation seems better suited to tasks that 

evidence targeted skills only given ancillary skills. 
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w[=(U,Mmis)] 

Table 1 
Weighting Factors for Likelihoods when V = (1,1,*,*,*) 

 g^,(m\u)  
Fully 

Ignorability 

11000 .10 
11001 .10 
11010 .10 
11011 .10 
11100 .10 
11101 .10 
11110 .10 
inn .10 

E{e\v) 1.32 

Var(dlv) 1.56 

efficiei it Choice Partially-Efficient 
Choice, 0 = 9 

1.00 .91 
.33 .31 
.33 .31 
.17 .16 
.33 .31 
.17 .16 
.17 .16 
.10 .10 

.52 .82 

1.72 1.71 

Table 2 
Weighting Factors for Likelihoods when V = (1,0,*,*,*) 

M[=(l,0,Mmis)] Ignorability 

10000 .10 
10001 .10 
10010 .10 
10011 .10 
10100 .10 
10101 .10 
10110 .10 
10111 .10 

E(e\v) -.52 

Var(6\v) 1.50 

g<j,(m\u) 

efficiei it Choice Partially-Efficient 
Choice, <f> = 9 

1 .91 
0 .01 
0 .01 
0 .01 
0 .01 
0 .01 
0 .01 
0 .01 

1.84 -1.31 

1.20 1.48 

Table 3 
Ignorability Results for Estimating 6 Given Item Parameters 

Type of Inference 
Type of Missingness Direct Likelihood Bayesian 
Alternate Test Forms 
Targeted Test Forms 

Adaptive Testing 
Not-Reached Items 

Intentional Omits 
Examinee Choice 

Yes 
Yes 

Yes 
Yes 

No 
No 

Yes 
Yes, conditional on examinee 

covariates 
Yes 

No, unless speed and ability 
are independent 

No 
No 
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Figure 1 

Response Curves for Correct Response to Two 
Dichotomous Rasch-Model Items 
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Figure 2 

Likelihood and Posterior Distribution for 6 after Observing u=(l,0) 



Yes:/>*(0) 

(my.,M;) = (l,l) 

Path Probability 

[l-Rj(e)f*(6) 

Correct? 
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Figure 3 

Conditional Probabilities of Possible Paths to Responses 
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Figure 4 

Inference about 0from v=(l,l,*,*,*) 
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